miércoles, 16 de marzo de 2011

TERMODINÁMICA

termodinamica


Sistema termodinámico típico mostrando la entrada desde una fuente de calor (caldera) a la izquierda y la salida a un disipador de calor (condensador) a la derecha. El trabajo se extrae en este caso por una serie de pistones.
La termodinámica (del griego θερμo-, termo, que significa "calor"[1] y δύναμις, dínamis, que significa "fuerza")[2] es una rama de la física que estudia los efectos de los cambios de magnitudes de los sistemas a un nivel macroscópico. Constituye una teoría fenomenológica, a partir de razonamientos deductivos, que estudia sistemas reales, sin modelizar y sigue un método experimental.[3] Los cambios estudiados son los de temperatura, presión y volumen, aunque también estudia cambios en otras magnitudes, tales como la imanación, el potencial químico, la fuerza electromotriz y el estudio de los medios continuos en general. También podemos decir que la termodinámica nace para explicar los procesos de intercambio de masa y energía térmica entre sistemas térmicos diferentes. Para tener un mayor manejo especificaremos que calor significa "energía en tránsito" y dinámica se refiere al "movimiento", por lo que, en esencia, la termodinámica estudia la circulación de la energía y cómo la energía infunde movimiento. Históricamente, la termodinámica se desarrolló a partir de la necesidad de aumentar la eficiencia de las primeras máquinas de vapor.
El punto de partida para la mayor parte de las consideraciones termodinámicas son las leyes de la termodinámica, que postulan que la energía puede ser intercambiada entre sistemas en forma de calor o trabajo. También se introduce una magnitud llamada entropía,[4] que mide el orden y el estado dinámico de los sistemas y tiene una conexión muy fuerte con la teoría de información. En la termodinámica se estudian y clasifican las interacciones entre diversos sistemas, lo que lleva a definir conceptos como sistema termodinámico y su contorno. Un sistema termodinámico se caracteriza por sus propiedades, relacionadas entre sí mediante las ecuaciones de estado. Éstas se pueden combinar para expresar la energía interna y los potenciales termodinámicos, útiles para determinar las condiciones de equilibrio entre sistemas y los procesos espontáneos.
Con estas herramientas, la termodinámica describe cómo los sistemas responden a los cambios en su entorno. Esto se puede aplicar a una amplia variedad de temas de ciencia e ingeniería, tales como motores, transiciones de fase, reacciones químicas, fenómenos de transporte, e incluso agujeros negros. Los resultados de la termodinámica son esenciales para la química, la física, la ingeniería química, etc, por nombrar algunos.

Leyes de la termodinámica

Principio cero de la termodinámica

Este principio establece que existe una determinada propiedad, denominada temperatura empírica θ, que es común para todos los estados de equilibrio termodinámico que se encuentren en equilibrio mutuo con uno dado. Tiene tremenda importancia experimental — pues permite construir instrumentos que midan la temperatura de un sistema — pero no resulta tan importante en el marco teórico de la termodinámica.
El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir o dar a conocer un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, coordenadas en el plano x , y) no son dependientes del tiempo. El tiempo es un parámetro cinético, asociado a nivel microscópico; el cual a su vez esta dentro de la físico química y no es parámetro debido a que a la termodinámica solo le interesa trabajar con un tiempo inicial y otro final. A dichas variables empíricas (experimentales) de un sistema se las conoce como coordenadas térmicas y dinámicas del sistema.
Este principio fundamental, aun siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibiese el nombre de principio cero.

 Primera ley de la termodinámica

También conocida como principio de conservación de la energía para la termodinámica — en realidad el primer principio dice más que una ley de conservación—, establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. Fue propuesta por Nicolas Léonard Sadi Carnot en 1824, en su obra Reflexiones sobre la potencia motriz del fuego y sobre las máquinas adecuadas para desarrollar esta potencia, en la que expuso los dos primeros principios de la termodinámica. Esta obra fue incomprendida por los científicos de su época, y más tarde fue utilizada por Rudolf Loreto Clausius y Lord Kelvin para formular, de una manera matemática, las bases de la termodinámica.
La ecuación general de la conservación de la energía es la siguiente:
Eentra − Esale = ΔEsistema
Que aplicada a la termodinámica teniendo en cuenta el criterio de signos termodinámico, queda de la forma:
ΔU = Q − W
Donde U es la energía interna del sistema (aislado), Q es la cantidad de calor aportado al sistema y W es el trabajo realizado por el sistema.
http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png
ilustración de la segunda ley mediante una máquina térmica

Segunda ley de la termodinámica

Esta ley arrebata la dirección en la que deben llevarse a cabo los procesos termodinámicos y, por lo tanto, la imposibilidad de que ocurran en el sentido contrario (por ejemplo, que una mancha de tinta dispersada en el agua pueda volver a concentrarse en un pequeño volumen). También establece, en algunos casos, la imposibilidad de convertir completamente toda la energía de un tipo en otro sin pérdidas. De esta forma, la segunda ley impone restricciones para las transferencias de energía que hipotéticamente pudieran llevarse a cabo teniendo en cuenta sólo el Primer Principio. Esta ley apoya todo su contenido aceptando la existencia de una magnitud física llamada entropía, de tal manera que, para un sistema aislado (que no intercambia materia ni energía con su entorno), la variación de la entropía siempre debe ser mayor que cero.
Debido a esta ley también se tiene que el flujo espontáneo de calor siempre es unidireccional, desde los cuerpos de mayor temperatura hacia los de menor temperatura, hasta lograr un equilibrio térmico.
La aplicación más conocida es la de las máquinas térmicas, que obtienen trabajo mecánico mediante aporte de calor de una fuente o foco caliente, para ceder parte de este calor a la fuente o foco o sumidero frío. La diferencia entre los dos calores tiene su equivalente en el trabajo mecánico obtenido.
Existen numerosos enunciados equivalentes para definir este principio, destacándose el de Clausius y el de Kelvin.

Enunciado de Clausius

Diagrama del ciclo de Carnot en función de la presión y el volumen.
En palabras de Sears es: "No es posible ningún proceso cuyo único resultado sea la extracción de calor de un recipiente a una cierta temperatura y la absorción de una cantidad igual de calor por un recipiente a temperatura más elevada".
 Enunciado de Kelvin
No existe ningún dispositivo que, operando por ciclos, absorba calor de una única fuente (E.absorbida), y lo convierta íntegramente en trabajo (E.útil).

Enunciado de Kelvin - Planck

Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito, y la realización de una cantidad igual de trabajo.

 Otra interpretación

Es imposible construir una máquina térmica cíclica que transforme calor en trabajo sin aumentar la energía termodinámica del ambiente. Debido a esto podemos concluir, que el rendimiento energético de una máquina térmica cíclica que convierte calor en trabajo, siempre será menor a la unidad, y ésta estará más próxima a la unidad, cuanto mayor sea el rendimiento energético de la misma. Es decir, cuanto mayor sea el rendimiento energético de una máquina térmica, menor será el impacto en el ambiente, y viceversa.

 Tercera ley de la termodinámica

La Tercera de las leyes de la termodinámica, propuesta por Walther Nernst, afirma que es imposible alcanzar una temperatura igual al cero absoluto mediante un número finito de procesos físicos. Puede formularse también como que a medida que un sistema dado se aproxima al cero absoluto, su entropía tiende a un valor constante específico. La entropía de los sólidos cristalinos puros puede considerarse cero bajo temperaturas iguales al cero absoluto. No es una noción exigida por la Termodinámica clásica, así que es probablemente inapropiado tratarlo de “ley”.
Es importante recordar que los principios o leyes de la Termodinámica son sólo generalizaciones estadísticas, válidas siempre para los sistemas macroscópicos, pero inaplicables a nivel cuántico. El demonio de Maxwell ejemplifica cómo puede concebirse un sistema cuántico que rompa las leyes de la Termodinámica.
Asimismo, cabe destacar que el primer principio, el de conservación de la energía, es la más sólida y universal de las leyes de la naturaleza descubiertas hasta ahora por las ciencias.

Procesos termodinámicos

Se dice que un sistema pasa por un proceso termodinámico, o transformación termodinámica, cuando al menos una de las coordenadas termodinámicas no cambia. Los procesos más importantes son:
  • Procesos isotérmicos: son procesos en los que la temperatura no cambia.
  • Procesos isobáricos: son procesos en los cuales la presión no varía.
  • Procesos isócoros: son procesos en los que el volumen permanece constante.
  • Procesos adiabáticos: son procesos en los que no hay transferencia de calor alguna.


Proceso isotérmico.
 
 
Se denomina proceso isotérmico o proceso isotermo al cambio de temperatura reversible en un sistema termodinámico, siendo dicho cambio de temperatura constante en todo el sistema. La compresión o expansión de un gas ideal en contacto permanente con un termostato es un ejemplo de proceso isotermo, y puede llevarse a cabo colocando el gas en contacto térmico con otro sistema de capacidad calorífica muy grande y a la misma temperatura que el gas; este otro sistema se conoce como foco caliente. De esta manera, el calor se transfiere muy lentamente, permitiendo que el gas se expanda realizando trabajo. Como la energía interna de un gas ideal sólo depende de la temperatura y ésta permanece constante en la expansión isoterma, el calor tomado del foco es igual al trabajo realizado por el gas: Q = W.
Una curva isoterma es una línea que sobre un diagrama representa los valores sucesivos de las diversas variables de un sistema en un proceso isotermo. Las isotermas de un gas ideal en un diagrama P-V, llamado diagrama de Clapeyron, son hipérbolas equiláteras, cuya ecuación es P•V = costante

5 comentarios:

  1. oLA EZta BUENa lA inForMazioN ME Fue UTil jejee....

    ResponderEliminar
  2. hola, pues la informacion esta bien pero como que el tamaño de la letra nop jejeje
    bueno pues sube mas imagenes si, sale bye

    ResponderEliminar
  3. muy buena informacion, solo un poco arregla la letra!... buen blog!

    ResponderEliminar
  4. abel esta muy bien toda la informacion ecepto el diseño de la letra..aja la neta ofende un poco mis ojos verdes.. jajajpero pueno esta bien...

    ResponderEliminar
  5. ES UNA BUENA PRESENTACION DE LOS TEMAS VISTOS EN LA ESCUELA DE ESTA MANERA SE REFRESCAN MÁS LOS CONOCIMIENTOS.

    ResponderEliminar